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Introduction 

Boolean algebra is used to analyse digital gates and circuits. It is a logic to perform mathematical operation on 

binary numbers i.e., on ‘0’ and ‘1’. Boolean algebra contains basic operators like AND, OR and NOT etc. 

Operations are represented by ‘.’ for AND, ‘+’ for OR. Operations can be performed on variables which are 

represented using capital letter e.g. ‘A’ , ‘B’ etc. 

Axioms or Postulates of Boolean algebra 

 

Axioms or Postulates of Boolean algebra are a set of logical expressions that we accept without proof and upon 

which we can build a set of useful theorems. 

 

 AND Operation OR Operation NOT Operation 

Axiom1 : 0.0=0 0+0=0 0’=1 

Axiom2: 0.1=0 0+1=1 1’=0 

Axiom3: 1.0=0 1+0=1 
 

Axiom4: 1.1=1 1+1=1 
 

 
Properties of Boolean algebra – 

 
 Annulment law – a variable ANDed with 0 gives 0, while a variable ORed with 1 gives 1, i.e., 

A.0 = 0 A + 

1 = 1 

 Identity law – in this law variable remain unchanged it is ORed with ‘0’ or ANDed with ‘1’, i.e., 

A.1 = A A + 

0 = A 

 Idempotent law – a variable remain unchanged when it is ORed or ANDed with itself, i.e., 

A + A = A 

A.A = A 

 Complement law – in this law if a complement is added to a variable it gives one, if a variable is 

multiplied with its complement it results in ‘0’, i.e., 

A + A’ = 1 

A.A’ = 0 

 Double negation law – a variable with two negation its symbol gets cancelled out and original 

variable is obtained, i.e., 

((A)’)’=A 

 Commutative law – a variable order does not matter in this law, i.e., A + B = B + A 

A.B = B.A 



 Associative law – the order of operation does not matter if the priority of variables are same like ‘*’ 

and ‘/’, i.e., 

A+(B+C) = (A+B)+C A.(B.C) 

= (A.B).C 

 Distributive law – this law governs opening up of brackets, i.e., A.(B+C) = (A.B)+(A.C) 

A+(B.C) = (A+B).(A+C) 

 Absorption law –:-This law involved absorbing the similar variables, i.e, A.(A+B) = A 

A + AB = A 

 De Morgan law – the operation of an AND or OR logic circuit is unchanged if all inputs are inverted, 

the operator is changed from AND to OR, the output is inverted, i.e., 

(A.B)’ = A’ + B’ 

(A+B)’ = A’.B’ 

Consensus Theorem 

 
Redundancy theorem is used as a Boolean algebra trick in Digital Electronics. It is also known as 

Consensus Theorem. this theorem is used to simply the Boolean Algebra. Conditions for applying 

Redundancy theorem are: 
 

1. Three variables must present in the expression.Here A, B and C are used as variables. 

2. Each variables is repeated twice. 

3. One variable must present in complemented form. Theorem 1.

 F = AB + A'C + BC = AB + A'C 

Here, we have three variables A, B and C and all are repeated twice. The variable C is present in 

complemented form. So, all the conditions are satisfied for applying this theorem. 
 

 

 

 
After applying Redundancy theorem we can write only the terms containing complemented variables 

(i.e, C) and omit the Redundancy term i.e., AB. 
 

.'. F = AB+BC’+AC=BC' + AC 

 

Consensus Theorem1 Proof: 

AB+BC’+AC = AB.1+BC’+AC 

= AB(C+C’)+BC’+AC 

= ABC+ABC’+BC’+AC 

= AC(B+1)+BC’(A+1) 

= BC’+AC 

 
The conjunctive dual of this equation is: 

 

Theorem 2:(A+B).(B+C’).(A+C) = (B+C’).(A+C) 



Three variables are present and all are repeated twice. The variable A is present in complemented form. 

Thus, all the three conditions of this theorem is satisfied. 

 

 

 

 

 
 

 

 
After applying Redundancy theorem we can write only the terms containing complemented variables 

(i.e, A) and omit the Redundancy term i.e., (B + C). 
 

.'. F = (A + B).(A' + C) 

 

 
 

Principle of Duality 

 
Each postulate consists of two expressions statement one expression is transformed into the other by 

interchanging the operations(+) and (⋅) as well as the identity elements 0 and 1.Such expressions are 

known as duals of each other.If some equivalence is proved, then its dual is also immediately true.If we 

prove: (x.x)+(x’+x’)=1, then we have by duality:(x+x)⋅(x’.x’)=0The Huntington postulates were listed 

in pairs and designated by part (a) and part (b) in below table. 

 

Table for Postulates and Theorems of Boolean algebra 
 

 

Part-A Part-B 

A+0=A A.0=0 

A+1=1 A.1=A 

A+A=A (Impotence law) A.A=A (Impotence law 

A+A’=1 A.A’=0 

Commutative law: A+B=B+A A.B=B.A 

Associative law: A + (B +C) = 

(A +B)+C 

A(B.C) = (A.B)C 

Distributive law: A.(B + C) = 

AB+AC 

A + BC = (A + B).(A +C) 

Absorption law: A +AB=A A(A +B) = A 

DeMorgan Theorem: 

(A+B)’ = A’. B’ 

(A.B)’ = A’+ B’ 



Redundant Literal Rule: 

A+(A’.B)’=A+B 

A.(A’+B)’=AB 

Consensus Theorem: AB+ 

A’C + BC = AB + A’C 

(A+B). (A’+C).(B+C) =(A+B). 

(A’+C) 

 

Canonical & Standard Forms 

 
We will get four Boolean product terms by combining two variables x and y with logical AND 

operation. These Boolean product terms are called as min terms or standard product terms. The min 

terms are x’y’, x’y, xy’ and xy. 
 

Similarly, we will get four Boolean sum terms by combining two variables x and y with logical OR 

operation. These Boolean sum terms are called as Max terms or standard sum terms. The Max terms 

are: 

x + y, x + y’, x’ + y and x’ + y’. 

 

The following table shows the representation of min terms and MAX terms for 2 variables. 
 

 

 
 

x y Min terms Max terms 

0 0 mo=x’.y’ M0=x+y 

0 1 m1=x’.y M1=x+y’ 

1 0 m2=x.y’ M2=x’+y 

1 1 m3=x.y M3=x’+y’ 

If the binary variable is ‘0’, then it is represented as complement of variable in min term and as the 

variable itself in Max term. Similarly,  if the binary variable is ‘1’, then it is represented as 

complement of variable in Max term and as the variable itself in min term. 

 
From the above table, we can easily notice that min terms and Max terms are complement of each 

other. If there are ‘n’ Boolean variables, then there will be 2
n 
min terms and 2

n 
Max terms. 

 

Canonical forms 

A truth table consists of a set of inputs and outputs 
 

If there are ‘n’ input variables, then there will be 2
n 
possible combinations with 0’s and 1’s. So the 

value of each output variable depends on the combination of input variables. So, each output  

variable will have ‘1’ for some combination of input variables and ‘0’ for some other combination of 

input variables. 
 

Therefore, we can express each output variable in following two ways. 
 

 Canonical SoP form 

 Canonical PoS form 

 

Canonical SoP form 
 

Canonical SoP form means Canonical Sum of Products form. In this form, each product term 

contains all literals. So, these product terms are nothing but the min terms. Hence, canonical SoP 

form is also called as sum of min terms form. 
 

First, identify the min terms for which, the output variable is 1 and then do the logical OR of those 

min terms in order to get the Boolean expression function corresponding to that output variable. This 

Boolean function will be in the form of sum of min terms. 
 

Follow the same procedure for other output variables also, if there is more than one output variable. 



Example 

 

Consider the following truth table. 
 

 

 
 

Input Output 

p q r f 

0 0 0 0 

0 0 1 0 

0 1 0 0 

0 1 1 1 

1 0 0 0 

1 0 1 1 

1 1 0 1 

1 1 1 1 
 

 

 

Here, the output f is ‘1’ for four combinations of inputs. The corresponding min terms are p’qr, pq’r, pqr’, 

pqr. By doing logical OR of these four min terms, we will get the Boolean function of output f 
 

Therefore, the Boolean function of output is, f = p’qr + pq’r + pqr’ + pqr. This is the canonical SoP 

form of output, f. We can also represent this function in following two notations. 
 

f=m3+m5+m6+m7 

f=∑m(3,5,6,7) 

In one equation, we represented the function as sum of respective min terms. In other equation, we 

used the symbol for summation of those min terms. 
 

Canonical PoS form 
 

Canonical PoS form means Canonical Product of Sums form. In this form, each sum term contains all 

literals. So, these sum terms are nothing but the Max terms. Hence, canonical PoS form is also called as 

product of Max terms form. 
 

First, identify the Max terms for which, the output variable is 0 and then do the logical AND of those 

Max terms in order to get the Boolean expression function corresponding to that output variable. This 

Boolean function will be in the form of product of Max terms. 

Follow the same procedure for other output variables also, if there is more than one output variable. 
 

Example 
 

Consider the same truth table of previous example. Here, the output f 
 

is ‘0’ for four combinations of inputs. The corresponding Max terms are: p + q + r, p + q + r’, p + q’ + 

r, p’ + q + r. By doing logical AND of these four Max terms, we will get the Boolean function of output 

f 

 

Therefore, the Boolean function of output is, f = (p+q+r).(p+q+r′).(p+q′+r).(p′+q+r) This is the 

canonical PoS form of output, f. We can also represent this function in following two notations. 
 

f=M0.M1.M2.M4 

f=∏M(0,1,2,4) 

In one equation, we represented the function as product of respective Max terms. In other equation, we 

used the symbol for multiplication of those Max terms. 
 

The Boolean function, f = (p+q+r).(p+q+r′).(p+q′+r).(p′+q+r) is the dual of the Boolean function, f = 

p’qr + pq’r + pqr’ + pqr. 
 

Therefore, both canonical SoP and canonical PoS forms are Dual to each other. Functionally, these two 

forms are same. Based on the requirement, we can use one of these two forms. 



 

Standard forms 

We discussed two canonical forms of representing the Boolean outputs. Similarly, there are two 

standard forms of representing the Boolean outputs. These are the simplified version of canonical 

forms. 
 

 Standard SoP form 

 Standard PoS form 

 

The main advantage of standard forms is that the number of inputs applied to logic gates can be 

minimized. Sometimes, there will be reduction in the total number of logic gates required. 
 

Standard SoP form 
 

Standard SoP form means Standard Sum of Products form. In this form, each product term need not 

contain all literals. So, the product terms may or may not be the min terms. Therefore, the Standard SoP 

form is the simplified form of canonical SoP form. 
 

We will get Standard SoP form of output variable in two steps. 
 

 Get the canonical SoP form of output variable 

 Simplify the above Boolean function, which is in canonical SoP form. 
 

Follow the same procedure for other output variables also, if there is more than one output variable. 

Sometimes, it may not possible to simplify the canonical SoP form. In that case, both canonical and 

standard SoP forms are same. 
 

Example 
 

Convert the following Boolean function into Standard SoP form. f = p’qr + pq’r + pqr’ + 

pqr 

The given Boolean function is in canonical SoP form. Now, we have to simplify this Boolean function in 

order to get standard SoP form. 
 

Step 1 − Use the Boolean postulate, x + x = x. That means, the Logical OR operation with any Boolean 

variable ‘n’ times will be equal to the same variable. So, we can write the last term pqr two more times. 
 

⇒ f = p’qr + pq’r + pqr’ + pqr + pqr + pqr 
 

Step 2 − Use Distributive law for 1
st 

and 4
th 

terms, 2
nd 

and 5
th 

terms, 3
rd 

and 6
th 

terms. 

⇒ f = qr(p′+p)+ pr(q′+q) + pq(r′+r) 
 

Step 3 − Use Boolean postulate, x + x’ = 1 for simplifying the terms present in each parenthesis. 
 

⇒ f = qr(1)+ pr(1) + pq(1) 
 

Step 4 − Use Boolean postulate, x.1 = x for simplifying above three terms. 
 

⇒ f = qr + pr + pq 
 

⇒ f = pq + qr + pr 
 

This is the simplified Boolean function. Therefore, the standard SoP form 

corresponding to given canonical SoP form is f = pq + qr + pr 

Standard PoS form 

 

Standard PoS form means Standard Product of Sums form. In this form, each sum term need not 

contain all literals. So, the sum terms may or may not be the Max terms. Therefore, the Standard PoS 

form is the simplified form of canonical PoS form. 
 

We will get Standard PoS form of output variable in two steps. 
 

 Get the canonical PoS form of output variable 



 Simplify the above Boolean function, which is in canonical PoS form. 

 

Follow the same procedure for other output variables also, if there is more than one output variable. 

Sometimes, it may not possible to simplify the canonical PoS form. In that case, both canonical and 

standard PoS forms are same. 
 

Example 

 

Convert the following Boolean function into Standard PoS form. f = 

(p+q+r).(p+q+r′).(p+q′+r).(p′+q+r) 

The given Boolean function is in canonical PoS form. Now, we have to simplify this Boolean function in 
order to get standard PoS form. 

 

Step 1 − Use the Boolean postulate, x.x = x. That means, the Logical AND operation with any Boolean 

variable ‘n’ times will be equal to the same variable. So, we can write the first term p+q+r two more 

times. 
 

⇒ f = (p+q+r).(p+q+r).(p+q+r).(p+q+r′).(p+q′+r).(p′+q+r) 
 

Step 2 − Use Distributive law, x + (y.z)=(x+y).(x+z) 
 

for 1
st 

and 4
th 

parenthesis, 2
nd 

and 5
th 

parenthesis, 3
rd 

and 6
th 

parenthesis. 

⇒ f = (p+q+rr′).(p+r+qq′).(q+r+pp′) 
 

Step 3 − Use Boolean postulate, x.x’=0 for simplifying the terms present in each parenthesis. 
 

⇒ f = (p+q+0).(p+r+0).(q+r+0) 
 

Step 4 − Use Boolean postulate, x + 0 = x for simplifying the terms present in each parenthesis 
 

⇒ f = (p+q).(p+r).(q+r) 

⇒ f = (p+q).(q+r).(p+r) 
 

This is the simplified Boolean function. Therefore, the standard PoS form corresponding to given 

canonical PoS form is f = (p+q).(q+r).(p+r). This is the dual of the Boolean function, f = pq + qr + pr. 
 

Therefore, both Standard SoP and Standard PoS forms are Dual to each other. 


